A Radial Basis Function Neural Network Approach to Two-Color Infrared Missile Detection
English


LOOKING TO PLACE A BULK ORDER?CLICK HERE

Piracy-free
Piracy-free
Assured Quality
Assured Quality
Secure Transactions
Secure Transactions
Fast Delivery
Fast Delivery
Sustainably Printed
Sustainably Printed
Delivery Options
Please enter pincode to check delivery time.
*COD & Shipping Charges may apply on certain items.
Review final details at checkout.

About The Book

Multi-color infrared imaging missile-warning systems require real-time detection techniques that can process the wide instantaneous field of regard of focal plane array sensors with a low false alarm rate. Current technology applies classical statistical methods to this problem and ignores neural network techniques. Thus the research reported here is novel in that it investigates the use of radial basis function (RBF) neural networks to detect sub-pixel missile signatures. An RBF neural network is designed and trained to detect targets in two-color infrared imagery using a recently developed regression tree algorithm. Features are calculated for 3 by 3 pixel sub-images in each color band and concatenated into a vector as input to the network.
downArrow

Details