<p>This research analyzes material characterization measurements where axially symmetric air gaps exist between the sample material and the inner or outer conductor of a coaxial test fixture. Higher order fields are excited by the air gap and are not accounted for in generally used algorithms for determining the material permittivity and permeability. The result is error in the material characterization measurement. This research defines the fields within the material and air gap assuming them to be axially symmetric. The fields are then used via the modal method to calculate theoretical scattering parameters as a function of permittivity permeability and frequency. A complex two-dimensional Newton root search then iterates the permittivity and permeability for a given frequency minimizing the difference between the calculated scattering parameters and the measured scattering parameters. In this manner the root corresponds to the permittivity and permeability of the sample. The modal method provides accurate results for non-magnetic material measurements when the material sample fills only 30% of the radial distance between the inner and outer conductor of the coaxial line. Due to the concentration of the electric field at the inner conductor accurate results were achieved with a 29.25 mil material layer (400 mil air gap) on the inner conductor. It is shown that the modal method result converges to the material properties by using 10 modes. The modal method provides good results for high-dielectric constant magnetic material. Results for an outer gap scenario were more accurate than inner gap results.</p><p>This work has been selected by scholars as being culturally important and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact and remains as true to the original work as possible. Therefore you will see the original copyright references library stamps (as most of these works have been housed in our most important libraries around the world) and other notations in the work.</p><p>This work is in the public domain in the United States of America and possibly other nations. Within the United States you may freely copy and distribute this work as no entity (individual or corporate) has a copyright on the body of the work.</p><p>As a reproduction of a historical artifact this work may contain missing or blurred pages poor pictures errant marks etc. Scholars believe and we concur that this work is important enough to be preserved reproduced and made generally available to the public. We appreciate your support of the preservation process and thank you for being an important part of keeping this knowledge alive and relevant.</p><br>
Piracy-free
Assured Quality
Secure Transactions
Delivery Options
Please enter pincode to check delivery time.
*COD & Shipping Charges may apply on certain items.