*COD & Shipping Charges may apply on certain items.
Review final details at checkout.
₹2972
₹4377
32% OFF
Paperback
All inclusive*
Qty:
1
About The Book
Description
Author
Bayesian Statistical Methods provides data scientists with the foundational and computational tools needed to carry out a Bayesian analysis. This book focuses on Bayesian methods applied routinely in practice including multiple linear regression mixed effects models and generalized linear models (GLM). The authors include many examples with complete R code and comparisons with analogous frequentist procedures.In addition to the basic concepts of Bayesian inferential methods the book covers many general topics: Advice on selecting prior distributionsComputational methods including Markov chain Monte Carlo (MCMC) Model-comparison and goodness-of-fit measures including sensitivity to priorsFrequentist properties of Bayesian methodsCase studies covering advanced topics illustrate the flexibility of the Bayesian approach:Semiparametric regression Handling of missing data using predictive distributionsPriors for high-dimensional regression modelsComputational techniques for large datasetsSpatial data analysisThe advanced topics are presented with sufficient conceptual depth that the reader will be able to carry out such analysis and argue the relative merits of Bayesian and classical methods. A repository of R code motivating data sets and complete data analyses are available on the book’s website.Brian J. Reich Associate Professor of Statistics at North Carolina State University is currently the editor-in-chief of the Journal of Agricultural Biological and Environmental Statistics and was awarded the LeRoy & Elva Martin Teaching Award.Sujit K. Ghosh Professor of Statistics at North Carolina State University has over 22 years of research and teaching experience in conducting Bayesian analyses received the Cavell Brownie mentoring award and served as the Deputy Director at the Statistical and Applied Mathematical Sciences Institute.