Cohomology of Drinfeld Modular Varieties Part 2 Automorphic Forms Trace Formulas and Langlands Correspondence
shared
This Book is Out of Stock!

About The Book

Cohomology of Drinfeld Modular Varieties aims to provide an introduction to this subject and to the Langlands correspondence for function fields. These varieties are the analogues for function fields of the Shimura varieties over number fields. The Langlands correspondence is a conjectured link between automorphic forms and Galois representations over a global field. By analogy with the number-theoretic case one expects to establish the conjecture for function fields by studying the cohomology of Drinfeld modular varieties which has been done by Drinfeld himself for the rank two case. This second volume is concerned with the ArthurSHSelberg trace formula and to the proof in some cases of the Ramanujan-Petersson conjecture and the global Langlands conjecture for function fields. The author uses techniques that are extensions of those used to study Shimura varieties. Though the author considers only the simpler case of function rather than number fields many important features of the number field case can be illustrated. Several appendices on background material keep the work reasonably self-contained. This book will be of much interest to all researchers in algebraic number theory and representation theory.
Piracy-free
Piracy-free
Assured Quality
Assured Quality
Secure Transactions
Secure Transactions
*COD & Shipping Charges may apply on certain items.
Review final details at checkout.
6831
7110
3% OFF
Paperback
Out Of Stock
All inclusive*
downArrow

Details


LOOKING TO PLACE A BULK ORDER?CLICK HERE