Computation of the Stable Homotopy Groups of Spheres

About The Book

This book concerns a central problem in algebraic topology-stable homotopy groups of spheres. Ever since J. P. Serre's historic result showed that the homotopy groups of spheres are finitely generated in 1950s the determination of homotopy groups of spheres has always been the focus of algebraic topologists. Up to now still much has not been known to us. In our book we consider the stable part of the homotopy groups of spheres. We will mainly apply two computation tools to detect nontrivial elements of the stable homotopy groups of spheres-Adams spectral sequence and May spectral sequence. One part of this book is dedicated to obtaining some nontrivial product elements via the Adams spectral sequence. The remaining part is dedicated to approaching one important problem raised by M. Hovey--the convergence of a certain product in the Adams spectral sequence. The importance of this problem is its being related to the existence of a large seires of secondary periodic elements of the stable homotopy groups of spheres.
Piracy-free
Piracy-free
Assured Quality
Assured Quality
Secure Transactions
Secure Transactions
Delivery Options
Please enter pincode to check delivery time.
*COD & Shipping Charges may apply on certain items.
Review final details at checkout.
downArrow

Details


LOOKING TO PLACE A BULK ORDER?CLICK HERE