Distribution of the natural waves

About The Book

Annotation. In this paper we consider the spectral problem for the wave propagation in extended plates of variable thickness. Describes how to solve problems and numerical results of wave propagation in infinitely large plates of variable thickness. Viscous properties of the material are taken into account by means of an integral operator Voltaire. The study is part of the spatial theory of viscoelastic. The technique is based on the separation of spatial variables and formulating boundary Eigen values problem to be solved by the method of orthogonal sweep Godunov. Numerical values obtained for the real and imaginary parts of phase velocity as a function of wave number. When this coincidence numerical results obtained with the known data.
Piracy-free
Piracy-free
Assured Quality
Assured Quality
Secure Transactions
Secure Transactions
Delivery Options
Please enter pincode to check delivery time.
*COD & Shipping Charges may apply on certain items.
Review final details at checkout.
downArrow

Details


LOOKING TO PLACE A BULK ORDER?CLICK HERE