Electromyography Signal Analysis and Characterization

About The Book

Electromyography (EMG) signal gives an electrical representation of neuromuscular activation associated with contracting muscle provides information about the performance of muscles and nerves. EMG signal acquires noise while traveling through different tissues. With the appropriate choice of the Wavelet Function (WF) it is possible to remove interference noise. Higher Order Statistics (HOS) can suppress white Gaussian noise in detection parameter estimation and solve classification problems. Based on the RMS error it is noticed that WF db2 can perform denoising most effectively among the other WFs (db6 db8 dmey). Power spectrum analysis is performed to the denoised EMG where mean power frequency is calculated to indicate changes in muscle contraction. Gaussianity and linearity tests are conducted to understand changes in muscle contraction. According to the results increase in muscle contraction provides significant increase in EMG mean power frequency. The study also verifies that the power spectrum of EMG shows a shift to lower frequencies during fatigue. The bispectrum analysis shows that the signal becomes less Gaussian and more linear with increasing muscle force.
Piracy-free
Piracy-free
Assured Quality
Assured Quality
Secure Transactions
Secure Transactions
Delivery Options
Please enter pincode to check delivery time.
*COD & Shipping Charges may apply on certain items.
Review final details at checkout.
downArrow

Details


LOOKING TO PLACE A BULK ORDER?CLICK HERE