<p>When a camera is affixed on a dynamic mobile robot image stabilization is the first step towards more complex analysis on the video feed. This thesis presents a novel electronic image stabilization (EIS) algorithm for small inexpensive highly dynamic mobile robotic platforms with onboard camera systems. The algorithm combines optical flow motion parameter estimation with angular rate data provided by a strapdown inertial measurement unit (IMU). A discrete Kalman filter in feedforward configuration is used for optimal fusion of the two data sources. Performance evaluations are conducted by a simulated video truth model (capturing the effects of image translation rotation blurring and moving objects) and live test data. Live data was collected from a camera and IMU affixed to the DAGSI Whegs mobile robotic platform as it navigated through a hallway. Template matching feature detection optical flow and inertial measurement techniques are compared and analyzed to determine the most suitable algorithm for this specific type of image stabilization. Pyramidal Lucas- Kanade optical flow using Shi-Tomasi good features in combination with inertial measurement is the EIS algorithm found to be superior. In the presence of moving objects fusion of inertial measurement reduces optical flow root-mean-squared(RMS) error in motion parameter estimates by 40%. No previous image stabilization algorithm to date directly fuses optical flow estimation with inertial measurement by way of Kalman filtering.</p><p>This work has been selected by scholars as being culturally important and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact and remains as true to the original work as possible. Therefore you will see the original copyright references library stamps (as most of these works have been housed in our most important libraries around the world) and other notations in the work.</p><p>This work is in the public domain in the United States of America and possibly other nations. Within the United States you may freely copy and distribute this work as no entity (individual or corporate) has a copyright on the body of the work.</p><p>As a reproduction of a historical artifact this work may contain missing or blurred pages poor pictures errant marks etc. Scholars believe and we concur that this work is important enough to be preserved reproduced and made generally available to the public. We appreciate your support of the preservation process and thank you for being an important part of keeping this knowledge alive and relevant.</p>
Piracy-free
Assured Quality
Secure Transactions
Delivery Options
Please enter pincode to check delivery time.
*COD & Shipping Charges may apply on certain items.