Scale invariance has been found to empirically hold for a number of complex systems. The correct evaluation of the scaling exponents of a time series is fundamental to assess the real physical nature of a phenomenon. The traditional methods used to determine these scaling exponents are equivalent because they all rely on the numerical evaluation of the variance. However two statistical classes of phenomena exist: fractal Brownian motions and Lévy flights and walks. In this book I present the theory and concepts of alternative fractal methods of time series analysis. I introduce a complementary method based on the Shannon entropy: the Diffusion Entropy Analysis (DEA). Using synthetic solar geophysical sociological physiological and biological data I examine the properties of these methodologies and discuss the physical ambiguities of the variance-based methods. I argue that the variance-based algorithms should be used together with DEA to properly distinguish fractal Brownian motions from Lévy flight-walk classes of noises and complex processes. Computer C++ codes are provided for generating complex fractal noises and performing multiple fractal analyses of time series.
Piracy-free
Assured Quality
Secure Transactions
Delivery Options
Please enter pincode to check delivery time.
*COD & Shipping Charges may apply on certain items.