Fundamentals of Causal Inference


LOOKING TO PLACE A BULK ORDER?CLICK HERE

Piracy-free
Piracy-free
Assured Quality
Assured Quality
Secure Transactions
Secure Transactions
Fast Delivery
Fast Delivery
Sustainably Printed
Sustainably Printed
Delivery Options
Please enter pincode to check delivery time.
*COD & Shipping Charges may apply on certain items.
Review final details at checkout.

About The Book

Overall This Textbook Is A Perfect Guide For Interested Researchers And Students Who Wish To Understand The Rationale And Methods Of Causal Inference. Each Chapter Provides An R Implementation Of The Introduced Causal Concepts And Models And Concludes With Appropriate Exercises.-An-Shun Tai & Sheng-Hsuan Lin In Biometrics. One Of The Primary Motivations For Clinical Trials And Observational Studies Of Humans Is To Infer Cause And Effect. Disentangling Causation From Confounding Is Of Utmost Importance. Fundamentals Of Causal Inference Explains And Relates Different Methods Of Confounding Adjustment In Terms Of Potential Outcomes And Graphical Models Including Standardization Difference-In-Differences Estimation The Front-Door Method Instrumental Variables Estimation And Propensity Score Methods. It Also Covers Effect-Measure Modification Precision Variables Mediation Analyses And Time-Dependent Confounding. Several Real Data Examples Simulation Studies And Analyses Using R Motivate The Methods Throughout. The Book Assumes Familiarity With Basic Statistics And Probability Regression And R And Is Suitable For Seniors Or Graduate Students In Statistics Biostatistics And Data Science As Well As Phd Students In A Wide Variety Of Other Disciplines Including Epidemiology Pharmacy The Health Sciences Education And The Social Economic And Behavioral Sciences.Beginning With A Brief History And A Review Of Essential Elements Of Probability And Statistics A Unique Feature Of The Book Is Its Focus On Real And Simulated Datasets With All Binary Variables To Reduce Complex Methods Down To Their Fundamentals. Calculus Is Not Required But A Willingness To Tackle Mathematical Notation Difficult Concepts And Intricate Logical Arguments Is Essential. While Many Real Data Examples Are Included The Book Also Features The Double What-If Study Based On Simulated Data With Known Causal Mechanisms In The Belief That The Methods Are Best Understood In Circumstances Where They Are Known To Either Succeed Or Fail. Datasets R Code And Solutions To Odd-Numbered Exercises Are Available On The Book'S Website At Www.Routledge.Com/9780367705053. Instructors Can Also Find Slides Based On The Book And A Full Solutions Manual Under 'Instructor Resources'.
downArrow

Details