Goursat Partial Differentian Equation

About The Book

The Goursat partial differential equation is a hyperbolic partial differential equation which arises in science and engineering fields. Many approaches have been suggested to approximate the solutions of the Goursat partial differential equations such as the finite difference method Runge-Kutta method differential transform method variational iteration method and homotopy analysis method. These methods focus on series expansion and numerical differentiation approaches including the forward and central differences in deriving the schemes. In this book we developed new schemes to solve a class of Goursat partial differential equations that applies the Newton-Cotes formula for approximating the double integrals terms. The Newton-Cotes numerical integration involves Newton-Cotes order one Newton-Cotes order two Newton-Cotes order three and Newton-Cotes order four. The linear and nonlinear homogeneous and inhomogeneous Goursat problems are examined. The new schemes gave quantitatively reliable results for the problems considered. The numerical analysis test has been performed to ensure that the new schemes are accurate consistent stable and converge in solving these problems.
Piracy-free
Piracy-free
Assured Quality
Assured Quality
Secure Transactions
Secure Transactions
Delivery Options
Please enter pincode to check delivery time.
*COD & Shipping Charges may apply on certain items.
Review final details at checkout.
downArrow

Details


LOOKING TO PLACE A BULK ORDER?CLICK HERE