High-Dimensional Statistics
shared
This Book is Out of Stock!

About The Book

Recent years have witnessed an explosion in the volume and variety of data collected in all scientific disciplines and industrial settings. Such massive data sets present a number of challenges to researchers in statistics and machine learning. This book provides a self-contained introduction to the area of high-dimensional statistics aimed at the first-year graduate level. It includes chapters that are focused on core methodology and theory - including tail bounds concentration inequalities uniform laws and empirical process and random matrices - as well as chapters devoted to in-depth exploration of particular model classes - including sparse linear models matrix models with rank constraints graphical models and various types of non-parametric models. With hundreds of worked examples and exercises this text is intended both for courses and for self-study by graduate students and researchers in statistics machine learning and related fields who must understand apply and adapt modern statistical methods suited to large-scale data.
Piracy-free
Piracy-free
Assured Quality
Assured Quality
Secure Transactions
Secure Transactions
*COD & Shipping Charges may apply on certain items.
Review final details at checkout.
7300
8058
9% OFF
Hardback
Out Of Stock
All inclusive*
downArrow

Details


LOOKING TO PLACE A BULK ORDER?CLICK HERE