The study of higher categories is attracting growing interest for its many applications in topology algebraic geometry mathematical physics and category theory. In this highly readable book Carlos Simpson develops a full set of homotopical algebra techniques and proposes a working theory of higher categories. Starting with a cohesive overview of the many different approaches currently used by researchers the author proceeds with a detailed exposition of one of the most widely used techniques: the construction of a Cartesian Quillen model structure for higher categories. The fully iterative construction applies to enrichment over any Cartesian model category and yields model categories for weakly associative n-categories and Segal n-categories. A corollary is the construction of higher functor categories which fit together to form the (n+1)-category of n-categories. The approach uses Tamsamani''s definition based on Segal''s ideas iterated as in Pelissier''s thesis using modern techniques due to Barwick Bergner Lurie and others.
Piracy-free
Assured Quality
Secure Transactions
Delivery Options
Please enter pincode to check delivery time.
*COD & Shipping Charges may apply on certain items.