Hybrid Neural Networks for Weather Forecasting
English

About The Book

Weather plays a significant role in terms of life property agriculture and industry. Neural networks are capable of predicting the non-linear behavior of weather without the physics being explicitly explored. The most common method to train neural networks is through gradient decent based back propagation algorithm. But back propagation algorithm suffers from several disadvantages like local minima problem slow training and scaling problem. So the ways to solve these problems by hybridizing it with genetic algorithms. The hybrid technique can learn efficiently by combining the strengths of genetic algorithm with back propagation algorithm . The hybrid neural networks are more qualified if only the requirement of a global searching is considered. It is good at global search i.e. not in one direction and it works with a population of points instead of a single point. Also it blends the merits of both deterministic algorithm BP and stochastic optimizing algorithm GA.
Piracy-free
Piracy-free
Assured Quality
Assured Quality
Secure Transactions
Secure Transactions
Delivery Options
Please enter pincode to check delivery time.
*COD & Shipping Charges may apply on certain items.
Review final details at checkout.
downArrow

Details


LOOKING TO PLACE A BULK ORDER?CLICK HERE