Immunoinformatics
English

About The Book

Identification of Major Histocompatibility Complex (MHC) binding peptides is an important step in the selection of T-Cell epitope candidates that are suitable for usage in new vaccines. The binding groove of the MHC Class-II molecule is opened at both sides which allows for high variability in length of the peptides that bind to this molecule and consequently; complicates the prediction of the binding core motif. An accurate and efficient computational approach for the prediction of such peptides can greatly reduce the time and cost required for the design of new vaccines. EpiGASVM a new approach for the in silico prediction of MHC Class-II epitopes was developed by combining Genetic Algorithms and Support Vector Machines. Nine variations of EpiGASVM were applied to two sets of similarity-reduced benchmark data. The prediction accuracy and area under the receiver operating characteristic curve were calculated as measures of performance. The technique is compared with some state-of-the-art techniques in this area (e.g. ARB SMM-Align PROPRED NN-Align). Results shows that EpiGASVM is a promising new technique for the solution of the MHC Class-II epitope prediction problem.
Piracy-free
Piracy-free
Assured Quality
Assured Quality
Secure Transactions
Secure Transactions
Delivery Options
Please enter pincode to check delivery time.
*COD & Shipping Charges may apply on certain items.
Review final details at checkout.
downArrow

Details


LOOKING TO PLACE A BULK ORDER?CLICK HERE