Improvement the prediction using unsupervised discretization method

About The Book

This book presents research about comparison between the efficiency of unsupervised and supervised discretization methods for educational data from blended learning environment. Naïve Bayes classifier was trained for each discretized data set and comparative analysis of prediction models was conducted. The research goal was to transform numeric features into maximum independent discrete values with minimum loss of information and reduction of classification error. Proposed unsupervised discretization method was based on the histogram distribution and implementation of oversampling technique. The main contribution of this research is improvement of prediction accuracy using unsupervised discretization method which reducing the effect of ignoring class feature for educational data set.
Piracy-free
Piracy-free
Assured Quality
Assured Quality
Secure Transactions
Secure Transactions
Delivery Options
Please enter pincode to check delivery time.
*COD & Shipping Charges may apply on certain items.
Review final details at checkout.
downArrow

Details


LOOKING TO PLACE A BULK ORDER?CLICK HERE