<p>A methodology is developed for determining the validity of making a statistical turbulent approach using Kolmogorov theory to an aero-optical turbulent flow. Kolmogorov theory provides a stochastic method that has a greatly simplified and robust method for calculating atmospheric turbulence effects on optical beam propagation which could simplify similar approaches to chaotic aero-optical flows. A 2-D laminar Navier-Stokes CFD Solver (AVUS) is run over a splitter plate type geometry to create an aero-optical like shear mixing layer turbulence field. A Matlab algorithm is developed to import the flow data and calculates the structure functions structure constant and Fried Parameter (ro) and compares them to expected Kolmogorov distributions assuming an r 2/3 power law. The range of Cn 2's developed from the structure functions are not constant with separation distance and ranged between 10-12-10-10. There is a consistent range of data overlap within the Cn 2's derived from various methods for separation distances within the range 0.01m-0.02m. Within this range ro is found to be approximately 0.05m which is a reasonable value. This particular 2-D shear mixing layer was found to be non-Kolmogorov but further grid refinement and data sampling may provide a more Kolmogorov like distribution.</p><p>This work has been selected by scholars as being culturally important and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact and remains as true to the original work as possible. Therefore you will see the original copyright references library stamps (as most of these works have been housed in our most important libraries around the world) and other notations in the work.</p><p>This work is in the public domain in the United States of America and possibly other nations. Within the United States you may freely copy and distribute this work as no entity (individual or corporate) has a copyright on the body of the work.</p><p>As a reproduction of a historical artifact this work may contain missing or blurred pages poor pictures errant marks etc. Scholars believe and we concur that this work is important enough to be preserved reproduced and made generally available to the public. We appreciate your support of the preservation process and thank you for being an important part of keeping this knowledge alive and relevant.</p>
Piracy-free
Assured Quality
Secure Transactions
Delivery Options
Please enter pincode to check delivery time.
*COD & Shipping Charges may apply on certain items.