*COD & Shipping Charges may apply on certain items.
Review final details at checkout.
₹8236
₹10944
24% OFF
Hardback
All inclusive*
Qty:
1
About The Book
Description
Author
Recommender systems use information filtering to predict user preferences. They are becoming a vital part of e-business and are used in a wide variety of industries ranging from entertainment and social networking to information technology tourism education agriculture healthcare manufacturing and retail. Recommender Systems: Algorithms and Applications dives into the theoretical underpinnings of these systems and looks at how this theory is applied and implemented in actual systems. The book examines several classes of recommendation algorithms includingMachine learning algorithmsCommunity detection algorithmsFiltering algorithmsVarious efficient and robust product recommender systems using machine learning algorithms are helpful in filtering and exploring unseen data by users for better prediction and extrapolation of decisions. These are providing a wider range of solutions to such challenges as imbalanced data set problems cold-start problems and long tail problems. This book also looks at fundamental ontological positions that form the foundations of recommender systems and explain why certain recommendations are predicted over others. Techniques and approaches for developing recommender systems are also investigated. These can help with implementing algorithms as systems and includeA latent-factor technique for model-based filtering systemsCollaborative filtering approachesContent-based approachesFinally this book examines actual systems for social networking recommending consumer products and predicting risk in software engineering projects.